241 research outputs found

    Planning for the future : Future orientation, agency and self-efficacy of young adults leaving care in the Russian Arctic

    Get PDF
    The chapter investigates agency among young people who have lived in different forms of alternative care and transitioned to independent life in two regions of the Russian Arctic. The authors analyse the future expectations and orientations of young care leavers, relying on the concept of “subjective agency”, the self-understanding these young adults possess about their ability at a given moment to influence their own futures. The study discusses different-level factors, all of which impact subjective agency, such as social support systems (macro-level), regional infrastructures (meso-level) and the everyday interactions of young people (micro-level). The chapter concludes that the agency of the young adults in this study is restricted in many ways by external factors. On the other hand, it is found that support from significant adults can facilitate the self-understanding of young care leavers of their own ability to influence the course of their lives.Peer reviewe

    Toiset identiteettiä rakentamassa

    Get PDF

    Ääniä reunoilta (Tuula Helne)

    Get PDF

    Active Voltage Control in Distribution Networks Including Distributed Energy Resources

    Get PDF
    The structure and control methods of existing distribution networks are planned assuming unidirectional power flows. The amount of generation connected to distribution networks is, however, constantly increasing which changes the operational and planning principles of distribution networks radically. Distributed generation (DG) affects power flows and fault currents in the distribution network and its effect on network operation can be positive or negative depending on the size, type, location and time variation of the generator. In weak distribution networks, voltage rise is usually the factor that limits the network’s hosting capacity for DG. At present, voltage rise is usually mitigated either by increasing the conductor size or by connecting the generator to a dedicated feeder. These passive approaches maintain the current network operational principles but can lead to high DG connection costs. The voltage rise can be mitigated also using active voltage control methods that change the operational principles of the network radically but can, in many cases, lead to significantly smaller total costs of the distribution network than the passive approach. The active voltage control methods can utilize active resources such as DG in their control and also the control principles of existing voltage control equipment such as the main transformer tap changer can be altered. Although active voltage control can often decrease the distribution network total costs and its effect on voltage quality can also be positive, the number of real distribution network implementations is still very low and the distribution network operators (DNOs) do not consider active voltage control as a real option in distribution network planning. Some work is, hence, still needed to enable widespread utilization of active voltage control. This thesis aims at overcoming some of the barriers that are, at present, preventing active voltage control from becoming business as usual for the DNOs. In this thesis, active voltage control methods that can be easily implemented to real distribution networks are developed. The developed methods are, at first, tested using time domain simulations. Operation of one coordinated voltage control (CVC) method is tested also using real time simulations and finally a real distribution network demonstration is conducted. The conducted simulations and demonstrations verify that the developed voltage control methods can be implemented relatively easily and that they are able to keep all network voltages between acceptable limits as long as an adequate amount of controllable resources is available. The developed methods control the substation voltage based on voltages in the whole distribution network and also reactive and real powers of distributed energy resources (DERs) are utilized in some of the developed CVC methods. All types of DERs capable of reactive or real power control can be utilized in the control. The distribution network planning tools and procedures used currently are not capable of taking active voltage control into account. DG interconnection planning is based only on two extreme loading conditions (maximum generation/minimum load and minimum generation/maximum load) and network effects and costs of alternative voltage control methods cannot be compared. In this thesis, the distribution network planning procedure is developed to enable comparison of different voltage control strategies. The statistical distribution network planning method is introduced and its usage is demonstrated in example cases. In statistical distribution network planning, load flow is calculated for every hour of the year using statistical-based hourly load and production curves. When the outputs of hourly load flows (e.g. annual losses, transmission charges and curtailed generation) are combined with investment costs the total costs of alternative voltage control strategies can be compared and the most cost-effective approach can be selected. The example calculations show that the most suitable voltage control strategy varies depending on the network and DG characteristics. The studies of this thesis aim at making the introduction of active voltage control as easy as possible to the DNOs. The developed CVC methods are such that they can be implemented as a part of the existing distribution management systems and they can utilize the already existing data transfer infrastructure of SCADA. The developed planning procedure can be implemented as a part of the existing network information systems. Hence, the currently used network planning and operational tools do not need to be replaced but only enhanced

    Active Voltage Control in Distribution Networks Including Distributed Energy Resources

    Get PDF
    The structure and control methods of existing distribution networks are planned assuming unidirectional power flows. The amount of generation connected to distribution networks is, however, constantly increasing which changes the operational and planning principles of distribution networks radically. Distributed generation (DG) affects power flows and fault currents in the distribution network and its effect on network operation can be positive or negative depending on the size, type, location and time variation of the generator. In weak distribution networks, voltage rise is usually the factor that limits the network’s hosting capacity for DG. At present, voltage rise is usually mitigated either by increasing the conductor size or by connecting the generator to a dedicated feeder. These passive approaches maintain the current network operational principles but can lead to high DG connection costs. The voltage rise can be mitigated also using active voltage control methods that change the operational principles of the network radically but can, in many cases, lead to significantly smaller total costs of the distribution network than the passive approach. The active voltage control methods can utilize active resources such as DG in their control and also the control principles of existing voltage control equipment such as the main transformer tap changer can be altered. Although active voltage control can often decrease the distribution network total costs and its effect on voltage quality can also be positive, the number of real distribution network implementations is still very low and the distribution network operators (DNOs) do not consider active voltage control as a real option in distribution network planning. Some work is, hence, still needed to enable widespread utilization of active voltage control. This thesis aims at overcoming some of the barriers that are, at present, preventing active voltage control from becoming business as usual for the DNOs. In this thesis, active voltage control methods that can be easily implemented to real distribution networks are developed. The developed methods are, at first, tested using time domain simulations. Operation of one coordinated voltage control (CVC) method is tested also using real time simulations and finally a real distribution network demonstration is conducted. The conducted simulations and demonstrations verify that the developed voltage control methods can be implemented relatively easily and that they are able to keep all network voltages between acceptable limits as long as an adequate amount of controllable resources is available. The developed methods control the substation voltage based on voltages in the whole distribution network and also reactive and real powers of distributed energy resources (DERs) are utilized in some of the developed CVC methods. All types of DERs capable of reactive or real power control can be utilized in the control. The distribution network planning tools and procedures used currently are not capable of taking active voltage control into account. DG interconnection planning is based only on two extreme loading conditions (maximum generation/minimum load and minimum generation/maximum load) and network effects and costs of alternative voltage control methods cannot be compared. In this thesis, the distribution network planning procedure is developed to enable comparison of different voltage control strategies. The statistical distribution network planning method is introduced and its usage is demonstrated in example cases. In statistical distribution network planning, load flow is calculated for every hour of the year using statistical-based hourly load and production curves. When the outputs of hourly load flows (e.g. annual losses, transmission charges and curtailed generation) are combined with investment costs the total costs of alternative voltage control strategies can be compared and the most cost-effective approach can be selected. The example calculations show that the most suitable voltage control strategy varies depending on the network and DG characteristics. The studies of this thesis aim at making the introduction of active voltage control as easy as possible to the DNOs. The developed CVC methods are such that they can be implemented as a part of the existing distribution management systems and they can utilize the already existing data transfer infrastructure of SCADA. The developed planning procedure can be implemented as a part of the existing network information systems. Hence, the currently used network planning and operational tools do not need to be replaced but only enhanced

    The educational paradigm shift-a phenomenographic study of medical teachers' experiences of practices

    Get PDF
    BackgroundThis paper proposes a novel approach to the development of competence-oriented higher education, a national transformation aimed at harmonising and digitising undergraduate medical and dental education in Finland.MethodsWe apply phenomenography as a viable qualitative method for medical education research. To better understand medical teachers' expectations towards the change in the educational paradigm, we need to study teachers' experiences of the current practices in undergraduate medical and dental education. The phenomenographic approach facilitates solid links between research, educational development, and change.ResultsThe phenomenographic study maps the qualitatively different ways in which medical teachers experience undergraduate medical and dental education practices. The answers reflect the changing educational paradigm in medical schools, suggesting practical implications for further development of medical and dental education and training. Core content analysis is preferred instructional scaffold for both teachers and students to prioritise the extensive medical education objectives. The change towards competence-based orientation is in progress and national co-operation accelerates its impact.ConclusionThere is an obvious need to enrich the content of the current curriculum with national guidelines that aim for congruence in assessment and objectives. Our results suggest an assessment application for the theoretical concepts presented and promote the competence orientation of education throughout the curricula of medical and dental undergraduate education. Moreover, our results contribute to current European discourses on competence-based approaches in higher education. Up-to-date pedagogical faculty development programmes are a key prerequisite for teacher empowerment and future orientation in teaching and learning for healthcare professions.Peer reviewe
    corecore